
CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 1/21

CO-LaN: CAPE-OPEN Laboratories Network
Expanding Process Modelling Capability through Software Interoperability Standards

Association loi de 1901 créée le 8 Février 2001

 CAPE-OPEN Type Libraries Installers – Developer Guide

Summary

CO-LaN has developed a set of reusable installers for the CAPE-OPEN Type Libraries and associated
.NET Primary Interop Assemblies (PIA). The installations are intended for use by all vendors of
Process Simulation Software which implements the CAPE-OPEN interoperability standards and by
end-users of CAPE-OPEN-compliant software to ensure consistent installation, registration and
removal of the Type Libraries and PIAs of the CAPE-OPEN specifications on an end-user’s machine.
This document explains the requirements governing what the installers need to do; it describes the
solutions technologies used to develop the installers; and, it describes how they should be used by
software vendors delivering CAPE-OPEN compliant software.

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 2/21

ARCHIVAL INFORMATION

Title CAPE-OPEN Type Libraries Installers - Developer Guide

Owner Interoperability SIG

Location https://colan.repositoryhosting.com/trac/colan_coidl/download
s/13

Document Unique Identifier 92B9D160-B969-11EE-9EC1-0800200C9A66

Distribution Public

Status Approved

Document Version Number 1.3

Created Date 2024-02-13

Revision Date 2024-01-29

Number of pages 21

Version History

Document
Version
Number

RFC Date Release
Date

Comments

0.1 Created by Michael Halloran
0.2 Edited by Michel Pons
0.3 Responses to v0.2 comments by Michael Halloran
0.4 Edited by Michel Pons
0.5 Response to comments from M Pons
0.6 Responses accepted by M. Pons
0.7 Updates following CAPE-OPEN Developer reviews
0.8 Updates revised
0.9 Further comments incorporated
0.99 Added information on Transforms.
1.0 2024-02-13 Approved for publication
1.1 2024-02-28 NSI script examples updated
1.2 2024-04-25 Added reference to NSIS example in RepositoryHosting
1.3 2024-01-29 Replaced the link on page 12 with sample WiX

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 3/21

IMPORTANT NOTICES

COPYRIGHT NOTICE

Copyright 2024 CAPE-OPEN Laboratories Network (CO-LaN).

This document details a CAPE-OPEN Specification in accordance with the terms, conditions and notices set
forth below. The information contained in this document is subject to change without notice. This document
does not represent a commitment to implement any portion of this CAPE-OPEN Specification in any
software products.

PERMISSION NOTICE

Subject to all of the terms and conditions below, the owner of the copyright in this CAPE-OPEN
Specification hereby grants you a fully-paid up, non-exclusive, non-transferable, perpetual, worldwide
license (without the right to sublicense), to use this CAPE-OPEN Specification to create and distribute
software and to use, copy, and distribute this CAPE-OPEN Specification provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this CAPE-OPEN
Specification; (2) the CAPE-OPEN Specification will not be otherwise resold or transferred for commercial
purposes; and (3) no modifications are made to this CAPE-OPEN Specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions.

THIS DOCUMENT IS PROVIDED "AS IS," AND CO-LAN MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR
TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR
THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD-PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

CO-LAN WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of CO-LaN may NOT be used in advertising or publicity pertaining to this
document or its contents without specific, written prior permission obtained from CO-LaN. Title to copyright
in this document will always remain with CO-LaN.

Trademark Usage
Many of the designations used by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a
trademark claim, the designations have been printed in caps or initial caps.

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 4/21

Contents
Summary .. 1
1. Introduction .. 5
2. Glossary ... 5
3. Intended Audience ... 6
4. Requirements ... 6
5. Use Cases ... 7
5.1. Software vendor developing CAPE-OPEN compliant software .. 7
5.2. Software vendor with CAPE-OPEN compliant software already installed 7
5.3. Software vendor delivering CAPE-OPEN software using Windows Installer 7
5.4. Software vendor delivering CAPE-OPEN software using other installation technologies 8
5.5. Manual installation by an end-user .. 8
6. Solution Design .. 8
6.1. Merge Module Design ... 9
6.2. Interactive Installation Design ... 11
7. Examples of how to use the installers .. 12

1. WiX .. 12
2. Create a Transform file to support scripted installation of the CAPE-OPEN MSI files for
non-Windows Installers. .. 14
3. Manual Installation using the Windows Command line. ... 17
4. NSIS ... 20

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 5/21

1. Introduction

The CAPE-OPEN interface specifications define an interoperability standard allowing Process
Simulation environments, Unit Operation models, Physical Property systems and other simulation
components from different providers to work together. The interface standards are defined in IDL
files which are then compiled to Type Libraries, and the Type Libraries are referenced by the
implementations of CAPE-OPEN compliant software. Initially CAPE-OPEN implementations were
implemented using Microsoft COM technology but .NET implementations are also being made
which raises the requirement for COM .NET interoperability, and interoperability between different
.NET versions. These requirements are satisfied by providing Primary Interop Assemblies (PIA)
which are .NET assemblies that provide a .NET definition of the CAPE-OPEN interfaces derived
from the CAPE-OPEN Type Libraries and which provide a single, fixed set of .NET types that
correspond to the CAPE-OPEN interfaces.

The CAPE-OPEN interface specifications are maintained by CO-LaN with Special Interest Groups
being responsible for updates to the IDL statement of the interfaces as part of advancing and
clarifying the standards.

The Type Libraries and PIAs implement the shared definition of the standards on which all
providers of CAPE-OPEN software depend. To ensure consistent installation and removal of these
shared CAPE-OPEN components on a computer on which CAPE-OPEN software from different
software vendors is installed, CO-LaN has developed various installation packages for the Type
Libraries and PIAs. The packages install the necessary files and create the necessary registry entries
to define the CAPE-OPEN interfaces and to provide access to them via Type Libraries and PIAs on
the Microsoft Windows Operating Systems in both 32- and 64-bit form. The installation packages
are based on Windows Installer technology and are provided in the form of reusable merge modules
(.msm) intended for use by software providers and as installation packages (.msi) for manual
installation by end-users of CAPE-OPEN software.

2. Glossary

• IDL - Interface Definition Language
• PIA – Primary Interop Assembly
• COM – Component Object Model
• TLB – Type Library
• WiX – Windows Installer XML
• NSIS – Nullsoft Scriptable Install System
• MSM – Windows Installer Merge Module
• MSI – Microsoft Installer (file extension)
• GAC – Global Assembly Cache, location for storing shared ,NET Assemblies.
• SIG – Special Interest Group within CO-LaN

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 6/21

3. Intended Audience

This document is intended for vendors and developers of CAPE-OPEN compliant software who
need to deliver the Type Libraries and PIAs that contain the COM and .NET implementations of the
CAPE-OPEN specifications as part of delivering their own software. It is expected that readers will
understand install technology and will be familiar with the tools and concepts used to install
software on the Microsoft Windows platform.

4. Requirements

The purpose of the CAPE-OPEN interface specifications is to provide an interoperability standard
to be implemented by the vendors of Process Simulation software to allow end users of Process
Simulation to combine different software packages from multiple vendors at will.

The primary requirement for CO-LaN and for software vendors is that interoperability is achieved
and then maintained through the life cycle of all CAPE-OPEN compliant software on a user’s
machine. It is a given that there will be CAPE-OPEN software from more than one vendor on a
CAPE-OPEN user’s machine, since the objective is interoperability between software from
different providers. It is also the case that the CAPE-OPEN software installed on a machine will
change over time with software being added and deleted.

Interoperability depends on vendors using a single definition of the CAPE-OPEN interfaces during
the development cycle. Interoperability also depends on this same definition of the CAPE-OPEN
interfaces being installed on end-user machines.

Furthermore, interoperability depends on the definition of CAPE-OPEN interfaces staying on an
end-user’s machine as vendor software is installed and uninstalled as part of the normal lifecycle of
software on a machine.

The CAPE-OPEN Type Libraries and PIAs are required to support 32- and 64-bit software running
on 32- and 64-bit editions of the Windows Operating Systems. All versions of Windows from
Windows XP onwards and the corresponding versions of Microsoft COM need to be supported. All
versions of the .NET Framework need to be supported – current version is 4.6.1.

The 0.9 and 0.93 versions of the CAPE-OPEN standards are deprecated and do not need to be
installed on developers’ or end-users’ machines.

Software developed by CO-LaN is licensed using the Non-Profit Open Software License
(https://opensource.org/licenses/NPOSL-3.0). The interactive installers must require that the terms
of this License are accepted by the user installing the software. Where the installers are embedded
in other installation packages then the Licence terms and CO-LaN ownership must be
acknowledged in an attribution file as part of the product installation. The assumption is that
software vendors will already deliver or provide attribution files for other 3rd-party components that
also require attribution. Attribution files simply contain a list of copyright acknowledgements. They
may be provided online, or included in documentation, or installed as files with the software.
Examples of attribution best practice are given here:

https://opensource.org/licenses/NPOSL-3.0

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 7/21

https://wiki.creativecommons.org/wiki/Best_practices_for_attribution

5. Use Cases

The Type Library and PIA installation packages developed by CO-LaN provide the single
implementation of the CAPE-OPEN standards that vendors and users need to achieve
interoperability. They are provided in various forms to serve the following Use Cases:

5.1. Software vendor developing CAPE-OPEN compliant
software

As a Software Vendor developing CAPE-OPEN compliant software using COM and/or .NET, I
need access to the Type Libraries and PIAs containing the interface definitions of the CAPE-OPEN
standard.

I want to use the correct Type Libraries and PIAs when developing CAPE-OPEN software.

I want the CAPE-OPEN definitions to be automatically included and easily identifiable in the lists
of COM and .NET components that can be referenced from my software projects in MS Visual
Studio.

5.2. Software vendor with CAPE-OPEN compliant
software already installed

As a Software Vendor with CAPE-OPEN compliant software already installed using earlier Type
Libraries installers from CO-LaN, or using a Type Library installer developed independently, I
want to be sure that uninstalling the earlier packages and installing the current one will not break
any CAPE-OPEN software from any vendor installed using the new Type Library and PIA
installers.

5.3. Software vendor delivering CAPE-OPEN software
using Windows Installer

As a software vendor who has developed CAPE-OPEN compliant software using the CO-LaN Type
Libraries and PIAs, I want to include the same Type Libraries and PIAs as part of the installation of
my software.

Since I’m already using a tool for creating Windows Installer packages, I want to use a mechanism
that will easily integrate with that tool. My installer may allow per-user and per-machine
installations so the CAPE-OPEN installer must allow the same choice at installation time.

When my installation package is uninstalled, I want the CAPE-OPEN Type Libraries and PIAs and
all their registry entries to be uninstalled as well, unless they are being referenced by other software
packages.

https://wiki.creativecommons.org/wiki/Best_practices_for_attribution

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 8/21

5.4. Software vendor delivering CAPE-OPEN software
using other installation technologies

As a software vendor who has developed CAPE-OPEN compliant software using the CO-LaN Type
Libraries and PIAs, I want to include the same Type Libraries and PIAs as part of the installation of
my software

I cannot use Windows Installer Merge Modules so I need a standalone installation package which
can be invoked by my installer and installed silently. My installer may allow per-User and per-
Machine installations so the CAPE-OPEN installer must allow the same choice at install time.

When my installation package is uninstalled, I want the CAPE-OPEN Type Libraries and PIAs and
all their registry entries to be uninstalled as well unless they are being referenced by other software
packages.

5.5. Manual installation by an end-user
As a user of CAPE-OPEN-compliant software I need to be able to install CAPE-OPEN Type
Libraries and PIAs to repair CAPE-OPEN software interoperability. In an enterprise environment, I
need to be able to install on a per-User basis.

6. Solution Design

The CAPE-OPEN Type Library installer consists of two parts: a reusable “merge module” and an
installable package which uses the merge module to provide a mechanism for manual installation of
the CAPE-OPEN Type Libraries and PIAs. Both components are provided for 32-bit installation
and for 64-bit installation making four deliverables in total. In this document the differences
between 32-bit and 64-bit will be ignored unless they are important to the topic in order to avoid
unnecessary duplication.

All the logic and data for the correct installation and removal is contained in the merge modules.
The separate installation packages use the merge modules and add a User Interface – including
presentation of an End User License Agreement - and the logic to handle per-User and per-Machine
installations.

The merge module installer creates all the registry entries required by the CAPE-OPEN definitions
and installs the Type Libraries for CAPE-OPEN version 1.0 and 1.1 and the corresponding PIAs. It
also creates the registry entries for the CAPE-OPEN Component Categories which are used to
classify CAPE-OPEN software components. Where the merge module is installed multiple times on
a single machine by different software vendors, Windows Installer will automatically reference
count the installed components and correctly manage uninstall operations so that CAPE-OPEN
Type Libraries and PIAs are not removed while there are outstanding references to them.

The interactive installation packages deliberately make use of the merge modules so that the correct
reference counting behavior will result when install and uninstall operations are done manually or
through scripting. The Windows Installer Reference Counting means that it is safe for a vendor

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 9/21

package to uninstall the CAPE-OPEN components as part of their own uninstall, either through
direct dependency on the merge modules or through scripted use of the MSI.

The CAPE-OPEN Type Library installers are built using the Windows Installer system because it is
supported by Microsoft; the WiX toolset makes Windows Installer system available at no cost; it
supports a mechanism for reuse of installer components through merge modules; and the resulting
standalone installers can be integrated directly with other installer technologies. It is recommended
that CAPE-OPEN Software providers use the provided installation packages for these reasons.

Where a vendor uses the Windows Installer system – for example, through WiX or InstallShield or
Visual Studio - it is recommended that the CO-LaN MSM files are used. Where other installer
technologies are used, which do not support the use of Windows Installer Merge Modules, it is
recommended that new MSI packages are created and then are invoked through scripting. This
ensures that the correct reference counting behavior is maintained. The simplest way to create such
a package is to make and apply a Transform (.mst file) to the supplied MSI. Steps for doing this are
described in section 7.

The alternative to using the supplied MSM or MSI files would be to reverse engineer the installers
or to develop an independent installer for the Type Libraries. This is not recommended under any
circumstances. Doing this means losing the all benefits that come from the use of Windows Installer
system and carries the risk of introducing differences in the way the CAPE-OPEN Type Libraries
and PIAs are installed. It will also cause software failures when packages are uninstalled.

The CAPE-OPEN Type Library and PIA Installers support per-User and per-Machine installation
using a mechanism supported in Windows Installer 5.0 and later.

In summary, the benefits of this approach to providing reusable installers are:

- All software providers install the same CAPE-OPEN definitions in the same way to the
same locations ensuring consistency.

- Windows Installer ensures that multiple installations of the same installation components
behave correctly when software is uninstalled, removing the risk of one provider’s uninstall
removing the definitions and files that another provider is also relying on.

- Only a single Primary Interop Assembly created by CO-LaN gets installed. It is a
characteristic of .NET COM interoperability that there can only be one Primary Interop
Assembly for a given Type Library.

- Explicit definition of registry entries in the Windows Installer system results in reliable
installation and removal of all Registry entries associated with CAPE-OPEN definitions
rather than relying on Type Library registration.

Examples of how to use the merge module from different installation systems are provided in the
next section

6.1. Merge Module Design

The merge modules have to install TLB and PIA files and then to create the registry entries required

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 10/21

to record the locations of the files and to make their contents accessible to other programs according
to MS COM requirements.

File Locations

The installers use the standard folder CommonFilesFolder for installing the Type Libraries and they
create a sub folder of CommonFilesFolder called CAPE-OPEN and then additional sub-folders
called Reference Assemblies for the PIA files, Type Libraries for the TLBs and Licence for the
Licence documentation.

<CommonFilesFolder>\CAPE-OPEN\Reference Assemblies
<CommonFilesFolder>\CAPE-OPEN\Type Libraries
<CommonFilesFolder>\CAPE-OPEN\Licence

The reason for using sub-folders is to ensure there is no risk of accidental uninstallation when
earlier versions of the installers are uninstalled on a machine. The location of CommonFilesFolder
depends on the installation context chosen at installation time. For a per-User install it resolves to:

Users\<user>\Appdata\Local\Programs\Common

For a per-Machine installation it resolves to:

\Program Files (x86)\Common Files\

when using the 32-bit installer on a 64-bit system, and:

\Program Files\Common Files

when using the the 64-bit installer or on an x86 system.

The installation folders are fixed and the user is not presented with the option to choose alternatives.

In a per-Machine installation the PIAs are also installed to the Global Assembly Cache.

Registry Entries

The location of the Reference Assemblies folder is recorded in the Windows Registry so that the
assemblies can be found when a developer wants to add a reference to the CAPE-OPEN definitions
in an MS Visual Studio project. The PIAs are registered for .NET versions 2.0, 4.0 and 4.5.

Entries are created for the CAPE-OPEN Component Categories. Component Category data cannot
be expressed in IDL, other than as comments, and therefore this data is not present in the Type
Libraries and PIAs.

Registry entries are created for the two Type Libraries defining the location of the files. The
installer will overwrite any previous entry in the same installation context. Overwritten entries will
not be restored on uninstallation. The Type Library FLAGS and HELPDIR entries are created but
not populated.

Entries are created for each interface relating them to the GUIDs for the Type Libraries by version.

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 11/21

Per-User and Per-Machine installations

The merge module is designed following the conventions for Single Package Authoring which are
support in Windows Installer 5.0 and beyond. Single Package Authoring allows a single installation
to work for both per-User (single user) or per-Machine (all users) installation contexts.

Single Package Authoring is described here:

https://msdn.microsoft.com/en-us/library/windows/desktop/dd408068(v=vs.85).aspx

Single Package Authoring uses two WiX properties, ALLUSERS and MSIINSTALLPERUSER, to
define installer behavior.

Setting ALLUSERS=2 tells Windows Installer that the installer can install per-User or per-Machine
Setting MSIINSTALLPERUSER=”” tells Windows Installer to perform a per-Machine install
Setting MSIINSTALLPERUSER=1 tells Windows Installer to perform a per-User Install.

The use of these Properties is further described here:

https://msdn.microsoft.com/en-us/library/windows/desktop/dd408007(v=vs.85).aspx

The Installation Scope dialog shown when using the installer interactively sets these properties in
response to the user’s choice of installation scope. They can also be set when using the installer on
the command line as shown in the examples for Command Line installation in Section 7.

6.2. Interactive Installation Design

The interactive Installation package is built using the merge module and adds a User Interface to
prompt for acceptance of the End User License Agreement and to allow a choice between per-User
and per-Machine installations.

If the Installation package is invoked after a previous installation has completed, Repair and
Remove options are presented. Repair will re-install the CAPE-OPEN files and registry entries, and
Remove will uninstall them. The standard dialog used for this function also displays a Change
option but since the CAPE-OPEN install does not have a selection of product features that can be
changed, this feature is disabled.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd408068(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd408007(v=vs.85).aspx

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 12/21

7. Examples of how to use the installers
This flowchart summarizes the choices for using the installers:

1. WiX

WiX is documented and downloadable from wixtoolset.org

Your product
is installed

using
Windows
Installer

Yes No

Integrate the
appropriate CAPE-

OPEN-supplied
MSM file with
your installer –
See example 1

below.

Create a Transform
file to define a new
Product Code and
name – see 2
below.

Apply the
Transform to the
CAPE-OPEN-

supplied MSI file at
install time using
msiexec – see 3

below

Include your
Transfom file and

the appropriate
CAPE-OPEN

installer in your
package

http://wixtoolset.org/

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 13/21

The interactive installer provides a good example for how to use the merge modules. The following
is an example demonstrating the use of the merge module in WiX:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

<?define ProductID="QQQQQQQQ-RRRR-SSSS-TTTT-UUUUUUUUUUUU" ?>
<?define ProductUpgradeCode="AAAAAAAA-BBBB-CCCC-DDDD-EEEEEEEEEEEE" ?>
<?define ProductName="CAPE-OPEN for My Product" ?>
<?define Manufacturer="CAPE-OPEN for My Product" ?>

 <!--

 Current user install

 msiexec /i [InstallerName].msi /lv install.log ALLUSERS=2 MSIINSTALLPERUSER=1

 Remove

 msiexec /x {QQQQQQQQ-RRRR-SSSS-TTTT-UUUUUUUUUUUU} /q /lv uninstall.log ALLUSERS=2
MSIINSTALLPERUSER=1

 All users install

 msiexec /i [InstallerName].msi /lv install.log ALLUSERS=2 MSIINSTALLPERUSER=''

 Remove

 msiexec /x {QQQQQQQQ-RRRR-SSSS-TTTT-UUUUUUUUUUUU} /q /lv uninstall.log ALLUSERS=2
MSIINSTALLPERUSER=''

 -->

 <!-- note, change the product code (ProductID) when increasing the Version -->
 <Product Id="$(var.ProductID)" Name="$(var.ProductName)" Language="1033"
Version="1.0.0.0" Manufacturer="$(var.Manufacturer)"
UpgradeCode="$(var.ProductUpgradeCode)">
 <Package InstallerVersion="500" Compressed="yes" />

 <MajorUpgrade DowngradeErrorMessage="A newer version of this product is already
installed." AllowSameVersionUpgrades="yes"/>

 <!-- default to current user - can be overridden by command line options - see above
-->
 <Property Id="ALLUSERS" Value="2"/>
 <Property Id="MSIINSTALLPERUSER" Value="1"/>

 <Media Id="1" Cabinet="product.cab" EmbedCab="yes"/>

 <Directory Id="TARGETDIR" Name="SourceDir">

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 14/21

 <Merge Id="CAPEOPENTLBx86msm" Language="1033" SourceFile="CAPE-OPEN Type Libraries
x86.msm" DiskId="1" />
 <Merge Id="CAPEOPENTLBx64msm" Language="1033" SourceFile="CAPE-OPEN Type Libraries
x64.msm" DiskId="1" />
 </Directory>

 <Feature Id="TypeLib" Title="CAPE-OPEN type libraries" Level="1" AllowAdvertise='no'
InstallDefault='local' Absent='disallow'>
 <MergeRef Id="CAPEOPENTLBx86msm"/>
 <MergeRef Id="CAPEOPENTLBx64msm"/>
 </Feature>

 <!-- hide from add/remove programs-->
 <Property Id='ARPSYSTEMCOMPONENT'>1</Property>

 </Product>

</Wix>

2. Create a Transform file to support scripted installation of the
CAPE-OPEN MSI files for non-Windows Installers.

A Transform file allows modifications to be made to MSI files at the time they are installed. This is
a common technique for customizing install packages. When a vendor installs the CAPE-OPEN
Type Libraries using the MSI file – for example because the vendor uses NSIS rather than a
Windows Install compatible tool – the package needs to be customized to give it a vendor-specific
identity. This ensures that Windows Installer reference counting works correctly so that the
uninstall of one vendor’s product doesn’t affect another’s.

This section explains how to create a Transform file to create a vendor-specific version of the
CAPE-OPEN Type Library Installer. The installer will be made vendor-specific by changing its
ProductCode and its name.

The simplest way to create a Transform file is using the Orca tool from Microsoft. Orca is part of
the Microsoft Windows SDK but is also available as part of a much smaller download for the
Windows Installer 4.5 SDK which can be downloaded here:

http://download.microsoft.com/download/7/c/4/7c426dfc-46e2-4ded-bab4-
3b33600ad7d1/msi45sdk.msi
Open the downloaded file using 7Zip or a similar tool, and extract Orca.msi and install it. If you
install msi45sdk.msi you will need to search the folders created to find Orca.msi.

To create a Transform file:

Start Orca and use File Open to open CAPE-OPEN Type Libraries Installer x86.msi (or CAPE-
OPEN Type Libraries Installer x64.msi for 64-bit installation):

http://download.microsoft.com/download/7/c/4/7c426dfc-46e2-4ded-bab4-3b33600ad7d1/msi45sdk.msi
http://download.microsoft.com/download/7/c/4/7c426dfc-46e2-4ded-bab4-3b33600ad7d1/msi45sdk.msi

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 15/21

In the list of Tables scroll down and select Property:

On the Transform menu select New Transform:

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 16/21

Modify the GUID for ProductCode and the ProductName. (ProductName is modified to make it
easy to identify the customized installer in the Control Panel Add/Remove Programs list). To edit a
Property value, click on the current value and edit to make changes.

Then use Generate Transform on the Transform menu to create the Transform file.

Use Close Transform on the Transform menu to end the Transform creation process.

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 17/21

After this step Orca redisplays the original CAPE-OPEN msi file which has not been changed.
Orca can now be closed.

3. Manual Installation using the Windows Command line.

Command line installation of an MSI on Windows is possible using the msiexec command. To run
the command first open a Command Prompt window. The command:

msiexec /?

displays the following dialog which shows which version of Windows Installer is installed on the
machine and the command arguments and options:

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 18/21

More details on the arguments and options can be found here:

https://msdn.microsoft.com/en-gb/library/windows/desktop/aa367988(v=vs.85).aspx

The following examples all assume that the MSI files referred to are in the current directory. If they
are not then the full path to the file will need to be included within the “” characters in the value
passed for the /i command argument.

The examples all use the /q option on the assumption that the reason for using the command line is
to run the install in a batch mode or from within a non-Windows Installer installation system – see
the NSIS examples below. The /q option and its variants are used to suppress the installers User
Interface dialogs. If the /q option is not used in the examples below then the installers will run
interactively with all dialogs displayed.

The examples all set the TRANSFORMS and MSINEWINSTANCE properties on the assumption
that msiexec is being used as part of a script within another installer such as NSIS.

For a per-User install of the 32-bit installer, customized for use by XYZPME, on a 32- or 64-bit
Windows OS with Windows Installer 5.0 installed use the command line:

msiexec /i "CAPE-OPEN Type Libraries Installer x86.msi" /q TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=2 MSIINSTALLPERUSER=1

or for a 64-bit installation:

https://msdn.microsoft.com/en-gb/library/windows/desktop/aa367988(v=vs.85).aspx

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 19/21

msiexec /i "CAPE-OPEN Type Libraries Installer x64.msi" /q TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=2 MSIINSTALLPERUSER=1

The /q option completely suppresses all user interface.

For a per-Machine install of the 32-bit installer on a 32- or 64-bit Windows OS with Windows
Installer 5.0 installed use the command line:

msiexec /i "CAPE-OPEN Type Libraries Installer x86.msi" /qb TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=2 MSIINSTALLPERUSER=””

or for a 64-bit installation:

msiexec /i "CAPE-OPEN Type Libraries Installer x64.msi" /qb TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=2 MSIINSTALLPERUSER=””

Note the use of the /qb option in the per-Machine examples. This option allows a basic UI only and
is required so that the Windows User Account Control (UAC) dialog is displayed to allow the user
to confirm the installation. Just using /q on its own for a per-Machine installation will cause the
installation to fail with error 1603 because the default (silent) response to the UAC dialog is “NO”.

Alternatively a silent per-Machine install using /q will work if msiexec is run with Administrator
privileges, for example by using “Run as Administrator” to start the Command Prompt used to run
the msiexec command. It will also work if Group Policy on the machine allows an MSI to always
run with elevated privileges.

On a machine where the version of Windows Installer is earlier than 5.0 use the following
commands. For a per-User 32-bit install :

msiexec /i "CAPE-OPEN Type Libraries Installer x86.msi" /q TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=””

or for a 64-bit installation:

msiexec /i "CAPE-OPEN Type Libraries Installer x64.msi" /q TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=””

For a 32-bit per-Machine install use:

msiexec /i "CAPE-OPEN Type Libraries Installer x86.msi" /qb TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=1

or for a 64-bit installation:

msiexec /i "CAPE-OPEN Type Libraries Installer x64.msi" /qb TRANSFORMS=XYZPME.mst
MSINEWINSTANCE=1 ALLUSERS=1

With any version of Windows Installer, to uninstall the 32-bit installer use:

Msiexec /x "CAPE-OPEN Type Libraries Installer x86.msi" /q TRANSFORMS=XYZPME.mst

Or

Msiexec /x {Your-ProductCode-GUID}

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 20/21

Or for x64:

Msiexec /x "CAPE-OPEN Type Libraries Installer x64.msi" /q

Or

Msiexec /x {Your-ProductCode-GUID}

Note that when uninstalling a per-Machine installation the /qb option is required so that the UAC
dialog is displayed. As in the installation examples /q will work if msiexec is run with
Administrator privileges or if Group Policy gives Windows Installer elevated privileges.

4. NSIS

NSIS is available from nsis.sourceforge.net

Note that the same logic applies for other non-Windows Installer systems, although the syntax will
be different in each case.

NSIS does not use Windows Installer technology and is therefore not able to use merge modules
directly. However, it is possible for NSIS to run external installation packages. As explained above
in Section 6 – Solution Design, the MSI packages provided by COLAN use the merge modules to
ensure that the correct reference counting behavior will result as packages which rely on the CAPE-
OPEN Type Libraries and PIAs are installed and uninstalled on a machine. However, each where
the MSI is used int his way a Transform file must be applied to create a new installation package
which will ensure the correct reference counting behavior.

In an NSIS script the ExecWait command is used to execute Windows commands. To run an
external installation package as part of an NSIS installation use ExecWait with the Windows
Installer msiexec command. All the examples given above in the section describing Manual
Installation using the Windows Command line can be used within NSIS using ExecWait with the
appropriate syntax.

As an example, for a 32-bit per-Machine install on a machine with Windows Installer 5.0 installed
use the command line:

 ; Install the CAPE-OPEN Type Libraries

 ExecWait '"msiexec" /i "$INSTDIR\CAPE-OPEN Type Libraries Installer x86.msi" /qb
TRANSFORMS="$INSTDIR\\XYZPMC.mst" MSINEWINSTANCE=1 ALLUSERS=$\"$\"'

Note that the two files referred to in this command: “CAPE-OPEN Type Libraries Installer
x86.msi” and “XYZPME.mst” must be installed by the .nsi script to $INSTDIR so that this
command will execute properly on the target machine during installation.

The other examples given in the Manual Installation section above, and the msiexec command line
in general, can also be used following the same pattern. Note the use of the ‘ and “ characters and $\
as an escape sequence in the command passed to ExecWait.

CAPE-OPEN Type Libraries Installers – Developer Guide.docx

CO-LaN c/o Centre de Recherche Paris Saclay, Direction Scientifique, Les Loges en Josas – BP 126, 78354 Jouy-en-Josas Cedex, France
www.colan.org

Page 21/21

An example NSIS script that uses these techniques can be found here:

http://colan.repositoryhosting.com/svn_public/colan_examples/MixerSplitterExamples/Inst
aller/CPPInstallerWithTypeLibrariesMSI.nsi

To use commands appropriate to the Windows Installer version available on the user’s machine use
GetDLLVersion on MSI.dll. The GetDLLVersion function is described in this function
reference:

http://nsis.sourceforge.net/Docs/Chapter4.html#ffunctioncommands

And here is an example: http://nsis.sourceforge.net/Detect_MSI_3.1

http://colan.repositoryhosting.com/svn_public/colan_examples/MixerSplitterExamples/Installer/CPPInstallerWithTypeLibrariesMSI.nsi
http://colan.repositoryhosting.com/svn_public/colan_examples/MixerSplitterExamples/Installer/CPPInstallerWithTypeLibrariesMSI.nsi
http://nsis.sourceforge.net/Docs/Chapter4.html#ffunctioncommands
http://nsis.sourceforge.net/Detect_MSI_3.1

